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Abstract
We examine the threat to individuals’ privacy based on the
feasibility of reidentifying users through distinctive profiles
of their browsing history visible to websites and third par-
ties. This work replicates and extends the 2012 paper Why
Johnny Can’t Browse in Peace: On the Uniqueness of Web
Browsing History Patterns [48]. The original work demon-
strated that browsing profiles are highly distinctive and stable.
We reproduce those results and extend the original work to
detail the privacy risk posed by the aggregation of browsing
histories. Our dataset consists of two weeks of browsing data
from ~52,000 Firefox users. Our work replicates the original
paper’s core findings by identifying 48,919 distinct browsing
profiles, of which 99% are unique. High uniqueness holds
even when histories are truncated to just 100 top sites. We
then find that for users who visited 50 or more distinct do-
mains in the two-week data collection period, ~50% can be
reidentified using the top 10k sites. Reidentifiability rose to
over 80% for users that browsed 150 or more distinct domains.
Finally, we observe numerous third parties pervasive enough
to gather web histories sufficient to leverage browsing history
as an identifier.

1 Introduction

Web tracking is the process by which parties with visibil-
ity into web traffic identify distinctive patterns of navigation
in order to attribute browsing history to specific individuals.
Third-party trackers remain a major concern; their prevalence
and mass tracking activity is well documented [27, 53, 64].
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This work seeks to reproduce the findings of Olejnik, Castel-
luccia, and Janc [48] regarding the leakage of private infor-
mation when users browse the web. The reach of large-scale
providers of analytics and advertisement services into the
overall set of web properties shows a continued increase in
visibility [64] by such parties across a plurality of web prop-
erties. This makes the threat of history-based profiling even
more tangible and urgent now than when originally proposed.

2 Background and related work

As a replication of prior work, this manuscript presumes some
familiarity with the source manuscript [48]. The following
sections provide a summary of the original findings (Sec-
tion 2.1), changes in the overall context, and relevant back-
ground for a comparison between the original research and
our research (Section 2.2).

2.1 Original paper

Olejnik, Castelluccia, and Janc [48] gathered data in a
project aimed at educating users about privacy practices.
For the analysis presented in [48] they used the CSS :vis-
ited browser vulnerability [8] to determine whether vari-
ous home pages were in a user’s browsing history. That
is, they probed users’ browsers for 6,000 predefined "pri-
mary links" such as www.google.com and got a yes/no for
whether that home page was in the user’s browsing history.
A user may have visited that home page and then cleared
their browsing history, in which case they would not register
a hit. Additionally a user may have visited a subpage e.g.
www.google.com/maps but not www.google.com in which
case the probe for www.google.com would also not register
a hit. The project website was open for an extended period
of time and recorded profiles between January 2009 and May
2011 for 441,627 unique users, some of whom returned for
multiple history tests, allowing the researchers to study the
evolution of browser profiles as well.
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With this data, they examined the uniqueness of browsing
histories. Each history profile was assembled as a vector,
where each index was a boolean indicating the presence of
a historical visit to each of the 6,000 domains they probed
for. This vector was sorted by the popularity they observed
in their dataset. Research questions addressed in their work
included (a) How many profiles both unique and non-unique
were observed for profiles of different history sizes? (b) Did
profile distinctiveness vary with profile history size? and (c)
How did the size of the unique domain vector impact the
uniqueness metrics?

Notably, they found that with just the 50 most popular sites
they were able to get a very similar distribution of distinc-
tive histories compared to complete knowledge of the full
6,000 site list. Their analysis began with 382,269 users who
completed their popular site test; 94% of these had unique
browsing histories. There were 223,197 profiles with histories
of length 4 or more, of which 98% were unique. The results
were generalized to an information theoretical representa-
tion such that distinctiveness of profiles could be quantified.
This analysis allowed the results to be recomputed for a com-
pressed version of history profiles where only a set of 72
interest categories were considered. This resulted in 164,043
distinct profiles of which 88% were attributed to a unique
user.

The stability of history profiles was also measured in order
examine the possibility of history profiles being a tracking
vector. A subset of users revisited their site and they analyzed
the change in their history. They found profiles were stable
over time although there were limitations to the analysis due
to their history detection mechanism.

Finally, they explored the threat of large parties with ex-
tensive third-party reach (Google and Facebook) and built
unique domain vectors based exclusively on sites present in
users’ histories that also contained content from Google or
Facebook. They found 50% of Google-visible profiles, and
25% of Facebook-visible profiles, were unique.

2.2 Modern context

In early 2020, we are in the midst of an upheaval of the
tracking ecosystem, as regulatory oversight and public dis-
course appear to have reached a tipping point. Work published
around the time of the original manuscript provides insight
into the state of the tracking ecosystem of that era [1,7,29,55].
More recent work depicts increasingly sophisticated tracking
technologies fueling the targeted behavioural advertisement
industry [31, 50, 51]. We also see continued increases in
scale [56], a profound lack of transparency in disclosure of
personal information flows [37], and consolidation of the in-
ternet economy to fewer, larger, dominant parties [6]. The
concept of a singular web is rendered increasingly obsolete
as more and more content is dynamically generated, personal-
ized per visitor, and generated by web visitors themselves.

Meanwhile, concerns from the time of the original
manuscript persist. Third-party trackers remain a major pres-
ence, with the prevalence of mass tracking activity now better
understood [17, 27, 30, 33, 34, 53, 64]. And, while the specific
technical exploit used to gather browser histories in the orig-
inal manuscript no longer exists, in 2018 Smith et al. [58]
documented four new history sniffing techniques.

In the modern context, increasing the usability of finger-
printing and transient identifiers is at the forefront of the tech-
nical web tracking discussion. Mishra et al. demonstrated
that IP addresses can be static for a month at a time [42]
which, as we will show, is more than enough time to build
reidentifiable browsing profiles. The effectiveness of finger-
printing to uniquely identify people has been debated since
Gómez-Boix et al. in 2018 [27] estimated that only 36% of
desktop users were uniquely identifiable compared to Eckers-
ley’s 2010 estimate of 88% [22]. However, Gómez-Boix et
al.’s paper [27] also showed that 95% of desktop users were
in a fingerprinting pool of just 100 users or less. We will show
this also has a significant impact on reidentifiability.

Another fundamental change in the web ecosystem has to
do with the drive towards cross-device identification [10, 13].
In this context, we see evidence of the original paper’s con-
cerns that browser histories may be used as an identifier com-
ing to light. While specifics are generally proprietary, market-
ing and advertising platforms advertise their ability to build
consumer profiles [2–4]. In 2015, Drawbridge, noted for their
use of probabilistic tracking [10], launched a public competi-
tion for cross-device identification [32]. The dataset included
user’s website data [20] and the winner of the competition
was DataLab, a marketing analytics company [54].

3 Methodology

We designed a methodology that would allow us to not only
replicate the original findings, but also extend the analysis
towards specific privacy threats raised by the original authors’
work. Data was collected from ~52,000 Firefox browser users
who elected to share data for research and product develop-
ment purposes beyond what is outlined in Mozilla’s default
data collection policies [44]. An opt-in prompt was shown to
candidate participants in accordance with Mozilla’s policies
governing data stewardship and consent management for user
research [47]. This prompt provided users with a clear, com-
prehensible, English-language explanation of the extended
data collection [45].

Measurement of browsing data was carried out using a
custom browser extension [46] derived from the OpenWPM
instrumentation [23]. Data was encrypted on the client and
collected via secure infrastructure separated from Mozilla’s
normal telemetry pipeline enabling highly restricted data ac-
cess. Data was collected in "pings" transmitted regularly
from the browser as data amassed. Each browser was given
a unique identifier to enable pings to be joined together to
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assemble the dataset. This unique identifier was specific to
the opt-in data collection program used by this study and not
connected or join-able to other identifiers used by Mozilla.

For each user, we wished to amass two distinct browsing
periods of data. Practical considerations pertaining to the total
volume of data collected, operational costs, and a desire to
measure profile stability motivated our implementation which
collected data for 7 calendar days, paused for 7 days, and
subsequently resumed for an additional 7 days. We added
an additional day to each week-long observation period to
ensure collection of delayed pings.

Figure 1 shows the number of unique users who were ac-
tive each day of the experiment. The final dataset ultimately

Figure 1: Number of unique active users per day over experi-
ment period (including intentional one-week gap.)

contained browsing data from ~35 million site visits and
~660,000 distinct domains, gathered between July 16 and Au-
gust 13, 2019. Figure 2 shows the distribution of the number
of different domains per user aggregated per collection day.
We typically see a median of 8 different domains per user per
day; aggregated over the entire collection period results in a
median of 34 different domains per user.

Figure 2: Number of unique domains visited per user per day.

Restricting our domain counts to only a top-site list (details
in section 3.1), the median number of domains per client was
18. This is comparable to a median of 10 seen in the original
paper, whose data collection methodology required use of
a top-site list. We also note that the maximum number of
domains per user is 1,116. Although this is a lot, it is not

an unrealistic amount for 14 days of browsing and is one
indicator that our users were real users rather than bots or
other automated tools using Firefox.

Min size Max size N users

1 25 21,519
26 50 11,195
51 75 6,750
76 100 4,499
101 125 2,791
126 150 1,766
151 - 3,457

Total 51,977

Table 1: Number of users by number of unique domain visits

We computed the distribution of the size of profiles across
users. Table 1 gives a top-level view of the relative sizes of
profiles when considering all unique domains visited. We see
a similar exponential trend as in the original work: the largest
number of users have a small history size.

We do not present the data for the number of site visits per
day. We found some users were strong outliers with hundreds
of thousands of page load events. We examined these manu-
ally and found that these users had one or two sites that were
being hit a very large numbers of times with otherwise normal
browser histories. We speculate that these users had browser
addon(s) installed for automation of specific workflows, but
were otherwise representative of normal, human browsing.
As we represent browsing history as a boolean vector of dis-
tinct domains, thereby removing all frequency measures, we
did not study this further and did not manually remove any
users from the dataset.

Our data collection mechanism allowed us to capture all
network requests and responses associated with site naviga-
tion events. Starting with complete information about the
user’s browsing history allows us to examine the uniqueness
of browsing profiles in full depth, and make strong claims
about the stability of profiles and model specific reidentifica-
tion scenarios. Capturing all the network requests allows us
to assess the potential tracking capabilities for wide range of
third parties.

Aside from the methodological differences outlined above,
we note several sources of potential variation between the spe-
cific study populations. Both studies use an opt-in population,
though with different methodology and flows. Our cohort pro-
vided a priori consent to longitudinal data collection, meaning
a low attrition rate compared to the original work which relied
on return visitors to the study website. The original study was
able to study traffic from different web browsers’ users. They
did not report on differences between browsers. However,
they do mention data from 1,256 users reporting a mobile
user agent. Our WebExtension shipped to Firefox versions 67

USENIX Association Sixteenth Symposium on Usable Privacy and Security    491



or 68, which were release-channel versions during the study
period, and ensured that the participants’ browser was config-
ured to an en-US localization, as the opt-in consent text was
only available in English.

3.1 Selection of a history vector
The original study by Olejnik et al. required a pre-selected
list of sites used to probe users’ histories to see if a user
had visited them. They sorted the list of sites by observed
popularity in their dataset. The globally ordered vector, with
boolean entries for each user was then the main input to their
analyses.

As we have complete information of browsing history dur-
ing the study period, we can create a history vector of the
observed domains, ranked by popularity. In our results, we la-
bel this as all observed domains. However, we also created a
pre-defined site list for analysis. We do this for the following
reasons: (a) using a pre-defined list allows us to more closely
replicate the original paper’s methodology; (b) to build a cat-
egory vector, we use a third-party service (see section 3.2)
and we do not want to leak user data to that service by basing
our queries on user data; and (c) since history-sniffing attacks,
which require a pre-defined vector, are still possible [58], it is
relevant to perform analyses with one.

Olejnik et al’s list of 6,000 popular sites was "created out
of 500 most popular links from Alexa, 4,000 from the Quant-
cast popular websites list, lists of common government and
military websites, and several custom-chosen URLs selected
for their demonstration and education potential."

Pre-experiment analysis performed by Zeber [63] examined
different top site lists, and led to our site list which is a hybrid
of the Alexa [5] and Tranco [36] top 10K site lists. We call
it the Trexa list and it is made by interleaving the sites from
each and dropping duplicate entries [59]. The top 100 Trexa
sites overlap with the 100 observed top sites in our user data
by 40%. If we expand to look at the top 10,000 sites from
each list, the overlap rises to 52%.

3.2 Generation of a category vector
To generate our category vector we used the WebShrinker
API [60] to obtain a categorization for domains. The entire
Trexa list was run through the WebShrinker API with the
Interactive Advertising Bureau categorization returned. The
IAB taxonomy has a series of top-level and sub-level cate-
gories, with corresponding scores and confidence levels for
each domain-category pair. We mapped each domain to its
highest-rated specific subcategory, unless no such confident
category existed. In that case, we substituted the most relevant
higher-level category. If the domain was listed as "Uncate-
gorized," we removed it from the dataset. Finally, we sorted
from most to least observed category as we did with the all
observed domains vector. Ultimately, our categorical dataset

contained 281 categories out of a total of a possible 404 of-
fered in the IAB category standard. The original paper used
a similar categorization service called Trend Micro, which
yielded 72 interest categories. Although Trend Micro is still
around today, we chose WebShrinker because the IAB cate-
gorization is in line with the threat of adtech we are interested
in exploring.

3.3 Terminology
Throughout the paper, we use the word user for convenience
and flow, but what we are actually examining is sets of
browser histories. The data we collected only guarantees
a unique identifier for the browser. There may be multiple
browsers per user and there may be multiple users per browser.

We refer to collections of unique user domain (or category)
visits in a given time period as a profile, as in Olejnik et
al. The profiles’ underlying dataset may be the list of all
observed domain visits, Trexa domain visits, or categories.
The size of a profile is thus the number of unique domains or
categories the profile contains.

As in the original work, and described in Section 2.1, we
also use the concept of a boolean profile vector. We refer to
an index of this vector as rank; thus, a subvector-to-rank-k
describes the vector of length k with boolean values represent-
ing whether a user has visited each of the top k items in the
dataset. Recall that the items in the vector are sorted from the
most popular item in the underlying dataset to the least.

4 Replication Results

4.1 Web history profile uniqueness
In Figure 3, we compare the size of profiles when we observe
all domains (as presented in Table 1), when we use the Trexa
list to specify the set of domains considered, and when we
use the category representation of profiles. As expected, the

Figure 3: Cumulative proportion of users per profile size.

distribution shifts left as profiles shrink in size, relatively
uniformly across the entire population. Shifting from all
domains to the Trexa list, the median profile size is reduced to
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18 domains. Restricting to just categories, the median profile
size shifts further still, to 11. We note that while the maximum
profile size for all observed domains (1116) is much higher
than its counterpart for Trexa (288) and categories (73), we
observe over 99% of all users in this plot.

In Figure 4, we examine the distribution of prevalence
of history profiles constructed from the set of all observed
domains, Trexa domains, and page categories. The leftmost
point on the x-axis represents the most common profile for
each underlying dataset. The y-axis represents the number of
users with that profile. In the Trexa dataset, for example, the
most popular profile consists of only visits to the most popular
Trexa domain, www.google.com, a profile which is shared
by 559 users, when considering all domains in the Trexa
list (brown line) and nearly 10,000 users when the domain
set to build profiles from is restricted to just the top 10 sites
(blue line). When again considering all domains in the Trexa
list, the second-most popular profile consists of only visits to
www.youtube.com, with 150 users. Generally, the smaller the
pool of users with the same profile, the more easily a specific
user can be identified. When the number of users with a
particular profile reaches 1, we call that profile unique, as it is
only observed for a single user within this data collection. We

Figure 4: Frequency distributions of distinct profiles ranked
by popularity, across multiple subvectors of top domains.

repeated the analysis with several subvectors of the domain
history, sampling up to the rank k entries for various values
of k. In all three datasets, k = 50 is enough to align the slope
of the line with the one generated from the entire population.
Additionally, the length of the segment at y = 1 for each line
on the chart indicates the number of profiles deemed unique.
This finding is consistent with results presented in Olejnik et
al. despite the differences in the underlying datasets.

We now estimate how much identifiability is lost by only
looking at a portion of a predefined domain list. When all
domains were observed, we saw 51,035 different profiles, cor-
responding to a 99.65% rate of uniqueness among our users.
Restricting to visibility only the top 100 most frequently ob-
served domains allowed us to compute 36,652 profiles (based
on available histories) of which 95.31% were unique. Sub-
stitution of the observed domain popularity with the Trexa
list led to the aggregation of 48,919 profiles of which 99.14%
were unique. Further constraining visibility to only the top
100 Trexa domains led to 31,810 profiles of which 92.05%
were unique. When using the compressed data representation
of just 281 categories, we still observed 43,348 profiles, of
which 97.24% were unique.

In Figure 5 we examine the change in proportion of unique
profiles with respect to the size of the subvector more closely,
looking at all values of k spanning the range 1 to 250. We

Figure 5: Variation in number and proportion of unique pro-
files as history vector grows in size.

found, unsurprisingly, that across datasets there are no unique
profiles described by a profile subvector of length 1 (in the
Trexa dataset, for example, there are 2 such possible profiles–
users that did or did not go to www.google.com). All ob-
served domains and categories were ordered by the user data,
describing the behavior of our users most precisely, and a
large amount of these profiles quickly exhibit uniqueness.
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Conversely, the ordering of the predefined Trexa domain vec-
tor does not perfectly match the population browsing data, ac-
counting for the lack of smoothness as k increases. Although
the category vector has less precision than a history vector,
a category covers numerous domains; thus the category vec-
tor allows for more browsing behavior to be represented for
a given k. We observe that the number of distinct category
profiles at the chart’s elbow (k~30) is larger than the amount
of distinct Trexa profiles by roughly a factor of 3.

Though it’s straightforward to classify two profiles as dis-
tinct or not, we would like to be able to conceptualize the
extent of the distance between them. Olejnik et al. used the
Jaccard index to measure similarity. In Figure 6, we use the
related Jaccard distance, measured as (1 - Jaccard index), to
examine the range of this distance. To generate the distribu-

Figure 6: Distribution of Jaccard distances between profiles
of a single user and distinct users

tions in Figure 6, we selected users total profile sizes of at
least 50, and then split the profile into two observed activity
periods. We then compute the Jaccard distance for the user
to theirself between period 1 and period 2, and the user in
period 1 to all other users in period 2. We plot a sample of
this distribution for tractability. Though there is overlap in
the distributions, we can reasonably expect that, for a given
profile, a profile from the same user has a smaller distance
than one from a different user a good portion of the time. Re-
peated measures from the distribution (if we had several more
time periods, for example) would only increase confidence in
which distribution the measurements belongs to.

We believe that our results strengthen the original paper’s
claim that subsets of user data pose a potential for exploitation
in user identifiability, despite differences in the underlying
data. The original manuscript observed a (likely) longer du-
ration of history for around 7 times as many users, while we
were able to collect more detailed information. In the context
of this Section, it’s important to note that our smaller popula-
tion increases the chances of observing a unique profile due
to fewer overall profiles.

The analysis performed above replicates the distribution of
profile sizes from Olejnik et al. Section 4.1.2, the frequency of
distributions of different subvectors from Sections 4.1.3 and

4.2.3, and the distribution of Jaccard similarity from 4.1.3. In
particular, we see similar trends and measurements of unique-
ness, as Olejnik et al. note in Section 4.1.2, 4.1.3, and 4.2.3.
Our similar findings regarding the uniqueness of category
profiles is particularly relevant in light of the proposal for
category-based targeted advertisement as a privacy safeguard
put forth by some advertisement companies [18, 26]. In this
section we did not directly address the original paper’s find-
ings related to surprisal, as in section 5.4 we use a different
approach to quantifying information gain from a more de-
tailed profile.

4.2 Stability of profiles
The original paper examined stability of history profiles to
understand the potential for browser histories to be used for
tracking. The combination of uniqueness and stability be-
ing preconditions for reidentifiability is also discussed by
Gómez-Boix et al [27]. However, the data collection method
employed by the original work hindered a detailed examina-
tion of profile stability as it relied on organic return visits
to the study page. Although over 368,000 browsing histo-
ries were collected, only a small fraction of users could be
included in the stability analysis. They report data for ~1,800
returning users on day 1, dropping to ~400 returning users by
day 7, and ~150 by day 14. Aside from sample size consid-
erations, two additional challenges impact the interpretation
of those findings. Firstly, the history detection technique em-
ployed could not detect whether sites collected on first visit
were revisited or first-time visits. Secondly, ground truth was
established based on reidentifying visitors with a combination
of IP Address and UserAgent, perhaps biasing the baseline
data to under-represent users accessing the web from multiple
locations. In particular, accurate estimation of site revisitation
rates is vital to estimating the possibility of reidentifiability.

Our methodology gathered two weeks of browsing data
from all our users. Although we do see a drop in the number
of users over the course of the study as visible in Figure 1, we
have two weeks of browsing data from tens of thousands of
users allowing us to model the reidentification of users based
on browsing history. Due to the fundamental differences be-
tween the datasets, we have not attempted to replicate the
original paper’s stability analysis. Instead, we extend the orig-
inal work and model reidentifiability as outlined in Section 5.
We note here that our work supports the original finding that
browser history profiles are stable.

4.3 Third parties
As our data collection included all requests and responses,
we are able to see all third parties that users were exposed
to. We find the results from the original paper are not only
reproducible, but are stronger today with Google (Alphabet)
and Facebook observing large portions of the web. Presenta-
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tion of our third-party analyses is available in the extension
section 5.6 where we examine the theoretical reidentifiability
of the top third parties our participants were exposed to.

5 Reidentification rates extension

As previewed in Sections 4.2 and 4.3, we wish to expand on
the work illuminating the privacy risk that Olejnik et al. [48]
describe. We do so by directly modeling the reidentifiabil-
ity of users based on their browsing history. As we move
into this section, recall that while we continue to talk about
profiles, as described in Section 3.3, we now consider each
user separately. If two different users have the same history
profile, they appear as two identical rows in our dataset and
the matching process, as explained in 5.1, will randomly se-
lect between those two users. For all the analyses presented,
period 1 and period 2 are the two weeks of browsing data
separated by a week.

5.1 Reidentifiability metric
As motivated by the distributions in Figure 6, we define a
model for attempting to reidentify a user between observation
sessions. For each user, we compute the Jaccard distance be-
tween the user’s period 1 profile vector and all profile vectors
in week 2. The period 2 browsing history vector with the
lowest Jaccard distance to the profile of interest is considered
the most likely match. (Note: We did not build special han-
dling for ties. We used the pandas idxmin function which
returns the "index of first occurrence of minimum over re-
quested axis". As the identifier is a randomly generated alpha
numeric code, we do not believe this introduced bias into our
results.) We then evaluate the match and a user is considered
reidentified if the correct identification was made. The reiden-
tifiability rate is thus the percentage of all users in a specified
pool who are reidentified in this manner.

Though the minimum Jaccard distance is a very simplistic
metric to use for this analysis, we chose it for a number of
reasons. Firstly, it directly follows from the examination of
Jaccard distances between profiles in the original paper. Sec-
ondly, it is easy to interpret: this metric picks the period 2
vector with the most overlap between both sets. Lastly, and
perhaps most importantly, building a reidentifiability engine
is a complex task with several domain-specific algorithmic
choices to consider. Subtler distance metrics, multinomial
data (modeling the frequency of domain visits), and more de-
tailed browsing metadata (time of browsing, for example, or
more privacy-invasive features that could be collected in the
wild) could all improve our matching algorithm significantly.
However, our goal is to take the next logical step beyond
the analysis of profile uniqueness to understand whether that
uniqueness implies a level of reidentifiability worth exploring.
Because of possible model improvements previously men-
tioned, we can safely consider the results we obtain to be

an underestimate of analagous methods potentially used in
industry.

We note that throughout the following analyses we split
users into groups by their overall profile size (the number of
distinct domains in their total browsing history). It is done
once to sub-divide the population. It is not recomputed for
each type of analysis and serves solely as a way to stratify the
population so that inter-group comparisons are valid.

5.2 Baseline reidentifiability

We start our analysis by looking at the reidentifiability of all
users with more than 50 distinct domains in their complete
browsing history. We start with this number as a trade-off
between two factors: (a) as we will show later in Section 5.4,
reidentifiability increases as the number of unique domains
in a user’s profile increases, and (b) as shown in Figure 3, the
smaller the minimum profile size we consider, the larger the
pool of users we have. Restricting to a minimum profile size
of 50 domains results in 19,263 users, 37% of the total in our
dataset. This number is tractable for computation and yields
significant reidentifiability rates.

With the data split into two profile vectors for the distinct
time periods, we compute the reidentifiability metric at vari-
ous subvectors of rank k. Once we had the vector of evaluated
reidentifications (True/False for each user), we resampled
it 10,000 times to find the bootstrapped confidence interval
for the rate of reidentifiability. Figure 7 shows these results
for both the set of all observed domains and the Trexa list
domains. The first thing we can observe from Figure 7 is

Figure 7: Reidentifiability over two domain lists for 19,263
users with a profile size over 50

the tightness of the 95% confidence intervals due to the pop-
ulation size. The relative width of these intervals can be
contrasted with those in Figure 9. Second, we observe that,
unsurprisingly, the more domains included in the computa-
tion, the higher the reidentifiability rates. This makes intuitive
sense: as we increase the rank of the subvector, we include

USENIX Association Sixteenth Symposium on Usable Privacy and Security    495



both less-common sites and combinations of sites that are
more likely to be specific to a particular user profile. Inter-
estingly, we note that although a subvector truncated at rank
100 leads to a high proportion of unique profiles (92-95%),
the reidentifiability rates are below 10% for both datasets.
However, when we include the subvector to rank 10,000, rei-
dentifiability rates grow to ~50%. Additionally, the difference
in reidentifiability across the two datasets is smaller than
we may have expected given the relatively large difference
between the two lists.

The upward trend in reidentifiability as the length of the
subvector increases makes sense, but we must also consider
the effect of stability of browsing activity. The more con-
sistent a history is, the easier it is to reidentify with smaller
amounts of data. For example, consider a light internet user
that regularly goes to the same 5 websites, compared with a
heavy internet user that spends many hours a day browsing
but rarely the same domains. Understanding types of users,
and patterns of browsing behavior, is a relevant problem but
outside the scope of this paper.

5.3 Modeling scaling effects

Another concern for a real-world implementation is the scale
of the user pool. In a pool of a single user, reidentifiability is
necessarily 100%. As the pool of potential candidates grows,
the signal must be increasingly specific in order to correctly
match two user profiles.

Measuring scalability is ideally done by collecting the
browsing data of millions of people. Unfortunately, this
method is infeasible within the limits of our research. Addi-
tionally, this type of collection involves privacy risk, although
we note that this practice is commonly employed by compa-
nies engaged in cross-site tracking activity.

To explore scalability with the data we have available to us,
we perform a Monte Carlo simulation with the subset of users
with a profile size over 50. We sample between 1 and the
max number of users 55,000 times without replacement, and
calculate the subvector of observed domains at rank 10,000
for each user’s profile. The sampling volumes were designed
to give good coverage over the log space of n users. The
results are shown in Figure 8. The log scale in the lower
plot causes the striations in reidentifiability on the left of the
lower plot, which are an artifact of the limited value space for
reidentifiability with small n (n = 1 has a reidentifiability rate
set of {1}, n = 2 has {0,0.5,1}, etc.).

The top chart suggests that the reidentifiability rate reaches
an asymptote, bolstered by the linearity on the log scale chart.
However, it does not feel prudent to say that the trend is
certain for millions of users. We leave this analysis to future
research. We can, however, make claims about the effects
of reducing the pool of users. Roughly speaking, a 10-fold
reduction in the number of users increases reidentifiability
by 10%. This is relevant as we now turn to looking at how

Figure 8: How reidentifiability scales with the number of
users in a pool. Simulation for all users with profile size over
50. Linear axis (above) and log axis (below).

reidentifiability risk increases as the number of domains in a
profile increases.

5.4 Effect of profile size

Understanding the effect of profile size on reidentifiability
can illuminate certain threat models. For example, if only
a modest threshold for profile size is needed, can a short
private browsing mode session provide enough activity to
allow reindentifiability, despite the precautions taken?

To understand the effect of profile size alone it is impor-
tant to constrain our data in new ways. We divide the data
into 7 groups with profile sizes as shown in Table 1. We
selected buckets that added 25 domains at a time so that the
smallest bucket, by number of users, still had a meaningful
1,766 users. As shown in Section 5.3, the number of users
in a reidentifiability pool affects the reidentifiability rate, so
we constructed our buckets to all be the same size in order
to isolate the effect of profile size. Specifically, we sampled
without replacement 1,766 users from each bucket. We then
computed the reidentifiability rate and the bootstrapped con-
fidence interval (n=10,000) at various subvector lengths as
done in Section 5.2. We repeated this process with a second
downsampled set to validate that the downsampling did not
overly bias the outcome. The results are presented for the
first downsampled set in Figure 9. As Figure 9 shows, rei-
dentifiability increases as profile size increases up to ~80%
for users with over 150 distinct domains in their profile. We
note the wider 95% confidence intervals compared to those in
Figure 7, which is expected with the smaller sample in each
group. If we look at the reidentifiability rate for the group
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Figure 9: Reidentifiability across varying profile sizes

with profile size 51-75, we see it is a little higher than that
shown for the 50 plus group shown earlier in Figure 7. There
are two competing forces here: (1) the smaller pool of users
in in this analysis drives higher reidentifiability, but (2) the
cap on the size of the profile at 75, as opposed to no cap in
Figure 7, limits reidentifiability.

We observe that as the size of bucket increases, the reiden-
tifiability rate increases. However, the increase diminishes
with each additional increase in profile size. At rank 10,000
the reidentifiability rate jumps ~20% when the profile size in-
creases from 1-25 to 26-50. However, the increase is less than
5% when going from 101-125 to 126-150. The additional
separation seen by the largest group (151+) is an artifact of
that bucket incorporating some much larger profiles.

As seen in section 5.1, Trexa reidentifiability rates are not
dramatically different despite the difference in these domain
lists. This similarity highlights the viability of history sniffing
attacks as tracking vectors, event though we found Trexa
to only have 52% overlap with observed user top sites. In
Figure 9, we note the "contraction" in the reidentifiability
rates at k=100, which is consistent with our observation that
the top 100 Trexa list overlaps with the observed browsing
history less than it does for the top 10,000.

5.5 Reidentifiability with category profiles
Using the category profiles from Section 4.1 we computed
reidentifiability rates with the full-length 281 category vector
for the same buckets of users as Section 5.4. The rates are
shown below in Table 2. The reidentifiability for categories

Profile size
Category-based reidentifiability rate
(95% confidence interval)

1 - 25 5.8% (4.8% - 6.9%)
26 - 50 10.0% (8.6% - 11.4%)
51 - 75 14.3% (12.7% - 16.0%)
76 - 100 15.7% (14.0% - 17.4%)
101 - 125 16.5% (14.8% - 18.3%)
126 - 150 19.1% (17.3% - 21.0%)
151+ 23.3% (21.3% - 25.3%)
51+ 8.1% (7.7% - 8.5%)

Table 2: Reidentifiability rate over category profiles

is limited but non-zero. The rates are consistent with domain
vectors of a similar length. We note, as in Section 5.2, that
although this small number of categories is sufficient to yield
a large number of distinct profiles, it does not yield high rei-
dentification using our metric. As noted by Olejnik et al., the
category analysis is an obvious candidate for a multinomial
approach, using the frequency of category visits instead of the
binary vector. However, as outlined in Section 5.1, we chose
to stick to a single reidentifiability metric. We look forward
to further work examining the impact of a more sophisticated
model.

5.6 Third-party reidentifiability
The original paper [48] constrained an examination of third
parties to the subset of domains on which third-party scripts
from Google or Facebook were observed. Our data collection
included all request and response data during the data collec-
tion period, allowing a direct identification of all third parties
present on a site during a user’s visit. However, the very
definition of a third-party relationship at the domain level has
become increasingly complex. On the web today, individual
actors, such as Oracle or Wikipedia, operate their services
on multiple domains. This presents three problems: (1) The
reach of one third-party domain does not accurately charac-
terize an entity’s reach; (2) an entity using a separate domain
to serve their own content on their main site, for example
media on wikipedia.org is hosted by wikimedia.org will be
identified as a third party; and (3) an entity may have a corpo-
rate or operational structure such that it has insight into data
collection performed by other companies, through common
ownership or data exchange agreements. To overcome these
challenges we use the webXray domain list [37, 38] which
connects domains with corporate entities and codifies corpo-
rate structures. For consistency we associate all domains with
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the highest level parent entity in the webXray dataset. So,
for example, we capture the third-party reach of Alphabet,
Google’s parent company.

We mark all requests with the parent entity they are as-
sociated with. If the parent entities of the request and the
navigation domain differ, the request marked as third party.
We measured the most prevalent third parties with two met-
rics: the number of first parties a third-party entity is present
on, and the number of users who were exposed to that third
party. We took the union of the top 50 by each metric to create
a list of 61 prevalent third parties. To preserve privacy, we
filtered this list to only contain third-party entities to which
more than 5,000 users had been exposed. This step resulted
in the removal of 1 third party, leaving a list of 60 third-party
entities to analyze.

We started with the top 10,000 observed domains and re-
duced it to the set visible by the third-party entity. This limits
the set of domains we are considering compared to the full
reach of the entities. However, it also makes the result directly
comparable with Figure 9, along with being more computa-
tionally tractable. The results are presented in Figure 10 for
three groups of users: the complete set of 19,263 users with
over 50 domains in their complete profile shown in Figure 7,
the set of 1,766 users with a profile size over 150 domains
shown in Figure 9, and a randomly selected set of 1,766 users
from those with a profile size over 50. This last set provides
a link between the other two, enabling direct comparisons
for both number of users and profile size. Figure 10 provides
a number of important insights. Firstly, we observe that the
steps between the three user groups are consistent across third
parties, and are consistent with our results in earlier sections.
We note that the results are presented as theoretical reiden-
tifiability rate in order to highlight that we are not claiming
the entities presented are all performing this kind of an attack.
That said, TapAd and Drawbridge, two leading probabilistic
trackers [10, 13], are present in our top third-party list with a
theoretical reidentifiability rate of approximately half the rate
we obtained with complete information. Alphabet and Face-
book, the two entities studied in the original paper, have close
to our computed maximum, which is significantly higher than
what the original authors found relative to their core metric
of uniqueness. We summarize third parties as being highly
prevalent and with the potential for deep visibility into brows-
ing activity; that potential for surveillance is not in and of
itself proof thereof.

6 Discussion

Our findings on profile uniqueness replicate those of Olejnik
et al. [48] and our work on reidentifiability provides robust
evidence for the viability of browser profiles as a tracking
identifier. Interpretation of these extended findings as it per-
tains to third parties requires a nuanced examination of the
underlying data. Notably, Wikimedia Foundation was ob-

Figure 10: Theoretical third-party reidentifiability rates

served on 395 of the top 10,000 first-party domains. This
is low in relation to Alphabet (parent company of Google)
at 9,823, and Facebook at 7,348, and the numerous compa-
nies from Verizon to TrustArc with a presence on 2,000 -
5,500 of the top 10,000 first-party domains. Nonetheless, 395
first-party domains could still be considered surprising for a
non-profit organization likely not engaging in data surveil-
lance activities. The surprisingly large presence of Wikimedia
is at least partially due to user-generated content, where in-
dividuals make use of web platforms to share content via
third-party links. This observation raises important questions
about methodological due diligence when interpreting third-
party relationships for the purpose of privacy and security
research.

To use a history profile as a tracking vector, one must first
be created. This means an entity requires some visibility into
browsing behaviour via another tracking identifier to enable
data collection over a time period, or they must perform a his-
tory sniffing attack. In some jurisdictions, history sniffing is
likely illegal [9] and in the US led to the FTC bringing charges
against a company [16]. This type of attack is very hard for
users to prevent, and responsibility rests with researchers and

498    Sixteenth Symposium on Usable Privacy and Security USENIX Association



browser vendors to remain vigilant in monitoring vulnerabil-
ities such as those disclosed by Smith et al. [58] to protect
global web users.

The most prevalent tracking identifier is a browser cookie;
however, as awareness of cookies has increased so have user
protections. Currently, tracking protections built into Firefox,
Edge, Safari, and Brave attempt to limit or block tracking
content. Protections are not complete for a variety of reasons;
often compromises are made to avoid unexpected errors in
the way web pages are loaded as web browsers must correctly
display web content while selectively blocking content de-
signed by web developers. In January 2020, Chrome made
headlines announcing that they will phase out third-party
cookies [57]. The W3C Privacy Community Group, with
members from all major browsers and a wide-range of stake-
holders, proposes going much further with Client-Side Stor-
age Partitioning (CSSP) [28]. CSSP will link access to a wide-
range of browser features to a first-party domain. In a sim-
ple case, if tracker.example sets a cookie on a.example,
on b.example, tracker.example will not see that cookie.
In principle, CSSP will make the web profoundly more pri-
vate than it is today, and its scope is far beyond cross-site
cookies. Versions of this type of protection can be seen in
Safari [61, 62], Firefox Nightly [12], Tor Browser [52], and
Brave [11] as of April 2020.

Even if traditional stateful tracking is addressed, IP address
tracking and fingerprinting are a real concern as ongoing
privacy threats that can work in concert with browser history
tracking. We point readers to Mishra et al.’s [42] discussion on
IP address tracking and possible mitigations. They observed
IP addresses to be static for as long as a month at a time, and
while not a perfect tracker, IP addresses are trivial to collect.
Our reidentifiability metric tracked users from one week to
the next using only one week of web browsing history to build
a profile (see Section 5). Technical solutions such as VPNs
and Tor can offer imperfect protection [42, 49], as can efforts
on behalf of Internet service providers to refresh users’ IP
addresses more frequently.

There is a growing technical emphasis on efforts to miti-
gate browser fingerprinting. Gómez-Boix et al. [27] found
that browser fingerprints are not perfect identifiers, but did ob-
serve that 95% of desktop users had fingerprints that matched
100 or fewer other users. Presuming that device-specific prop-
erties (screen size, graphics stack) are not correlated with
browsing history, then fingerprinting offers a mechanism to
greatly narrow a pool of users in which to associate brows-
ing histories. As we have shown, the smaller the pool of
users under consideration, the higher the reidentifiability rates
achievable with browsing history alone (see Section 5.3).

We are encouraged that fingerprintability is a considera-
tion in web specifications [19], but a significant amount of
work remains if we are to prevent fingerprinting and we hope
researchers and browser vendors will push aggressively on
anti-fingerprinting measures.

6.1 User-facing recommendations

Until the state of the web has improved, the onus of ensuring
privacy often falls on the user. However, evidence suggests
that general audiences are not aware that privacy protection
tools exist, let alone understand their function or the threats
they protect against [14]. Additionally, Fagan et al. [24]
describe the trade-off between convenience and security that
often results in non-compliance with security measures unless
the risk can be understood and evaluated.

Currently, users can limit their exposure to third-party track-
ing by opting into tools such as privacy addons [25, 39, 41],
containers [43], and by modifying their browser settings to
emphasize existing privacy features that may result in a dimin-
ished browsing experience. Blocking fingerprinting via the
Disconnect list in Edge and Firefox offers users protection,
but relies on a blocklist of known trackers. Privacy addons
offer fingerprinting protections through lists such as EasyList
and EasyPrivacy [21], or a fine-grained control over locally
curated exclusion lists, which require substantial effort by
users to maintain. Tor Browser includes changes to reduce
the entropy of the browser by normalizing the return values
of various APIs [52]. This functionality is also available in
Firefox behind the privacy.resistFingerprinting con-
figuration flag, but introduces compatibility issues with some
websites. Chrome’s Privacy Sandbox project [15] proposes
the concept of a privacy budget [35] that only allows a cer-
tain amount of entropy to accumulate, along with reducing
entropy and removing fingerprinting surfaces.

As the existence of these tools alone is not enough to pre-
vent a tracking threat, well-researched user experience prac-
tices should be considered in order to increase their adop-
tion and make their usage more seamless while mitigating
drawbacks. Mathur et al. [40] propose that browsers should
automatically provide comprehensive protection in particu-
larly sensitive contexts such as private browsing mode. We
did not collect data when a private browsing mode session
was active, and so cannot validate our threat model in this
context. However, the potentially sensitive nature of private
browsing indicates that the need to avoid tracking may over-
power the need to avoid breakage or inconvenience the user.
Developers of products with private browsing modes should
not only encourage their use when appropriate, but enforce
short, task-focused sessions to reduce the number and diver-
sity of domains visited, potentially by purging a session when
a threshold has been reached or by encouraging good user
habits via messaging, suggestions, or other interaction design.

Our research leaves a number of open questions that must
be considered in the face of designing user interventions for
browser history tracking. In particular, there are questions
about how to educate users and offer meaningful privacy pro-
tections against the kind of complex and abstract threat model
we outline. The many tools that currently exist to preserve
privacy should be encouraged within the context of a well-
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explained, specific threat to empower users to opt in to these
tools on an ongoing basis.

6.2 Limitations and future work

It is our hope that these findings will be appropriately in-
terpreted despite, and in context of, limitations to the data
collection methodology, reidentifiability metric, and the anal-
ysis of third-party relationships. As with any opt-in data
collection, our data represents a biased sample. We cannot
know the exact effect of this bias; however, we suggest that
our sample may exhibit greater homogeneity than we expect
from the overall internet-connected population. This may
have resulted in an underestimation of the ease with which
participants can be reidentified based on browsing histories.

We believe our replication provides an important and com-
plementary extension to the original, as we were able to di-
rectly study reidentification threats. Although we have similar
concerns regarding the feasibility with which such tracking
threats can be scaled to billions of web users, our discussion
in Section 6 provides anecdotal evidence that it is feasible
to combine independent tracking vectors, which would can
dramatically reduce the required scale for viability.

Our model leverages a very basic metric to demonstrate
reidentifiability. It was our intention to focus on the question
of moving from uniqueness of profiles to a baseline reidentifi-
ability rate. As described in section 5.1, there is a multitude
of more advanced techniques available. For example, Banse
et al. [7] achieved an 88.2% reidentification rate among 2,100
users based on daily browsing data using a Naive Bayes clas-
sifier and cosine distances. Perhaps more importantly, com-
panies engaged in this kind of activity have access to the full
range of tracking data: IP addresses, cookie-based identifiers,
identifiers from cookie-syncing, click attribution identifiers,
browser fingerprints, and user-generated identifiers such as
social media handles or email addresses used for logins. We
do not want to over-speculate on the relative impact of these
factors, but we do believe that the approach presented in this
work, in spite of the above caveats, is conservative when it
comes to the potential for using browser history as a tracking
profile.

We would like to highlight a core limitation of our approach
to measuring third parties at the entity level and why we be-
lieve it is still preferable to other strategies for discerning
relationships between web resources. This limitation is ex-
emplified by the presence of fbsbx.com, a Facebook-owned
domain, on our top third-party list. This domain was observed
on only 351 of the top 10,000 first-party domains, but its in-
clusion in our list was based on its visibility to users as a third
party. This was driven by the fact that the webXray dataset
does not currently associate fbsbx.com as being part of the
Facebook entity and so requests to fbsbx.com were marked
as third-party in nature when they originated from visits to
facebook.com and other popular Facebook owned first-party

sites. It is difficult to know how many times this has happened
during our data analysis; we consider the implications of this
finding and caveat our results accordingly. If a domain is
not associated with an entity in the webXray list it has the
following possible effects: (1) The presence / traffic of that do-
main in a third-party context is not correctly associated with
the entity, thereby lowering the power of the third-party in
our reidentifiability analysis, and (2) Missing the third-party
relationship with a domain only affects the reidentifiability
analysis by the number of first-party domains the third party
has been misidentified on. In the case of Facebook not being
linked with fbsbx.com, we may have incorrectly labeled it as
having a third-party relationship with Facebook domains such
as facebook.com, instagram.com, whatsapp.com. The
fact that fbsbx.com is not correctly associated with Face-
book has lowered the Facebook reidentifiability rate by up
to 350 domains, but it has raised the fbsbx.com domain rate
by only a handful of domains. We are comfortable with this
trade-off despite the fact that using an entity list introduces
a dependency on its accuracy and completeness. Correctly
characterising a third-party relationship in the context of web
research is, itself an immensely complex undertaking and
there is an abundance of future work to be done in this space.

Finally, we did not find all profiles to be unique or reiden-
tifiable. Future work should leverage the common traits in
these non-unique profiles in order to inform strategies for
privacy tools and education development.

7 Conclusion

In summary, we set out to replicate and expand upon the ideas
put forth in Olejnik et al.’s 2012 paper Why Johnny Can’t
Browse in Peace: On the Uniqueness of Web Browsing His-
tory Patterns. The original paper observed a set of ~400,000
web history profiles, of which 94% were unique. Our set of
48,103 distinct browsing profiles, of which 99% are unique,
followed similar distributions as the original. Likewise, these
patterns held when we used a public top-site list and category
mappings to restrict visibility into the number of domains
considered, mimicking the methodology of the original work.

Olejnik et al. found evidence for profile stability among
a small pool of returning users. We extend this work and
modeled reidentifiability directly for nearly 20,000 users. We
reidentify users from two separate weeks of browsing history,
and examine the effect of profile size, and how reidentifiability
scales with the number of users under consideration. Our
reidentifiability rates in a pool of 1,766 were below 10% for
100 sites despite a >90% profile uniqueness across datasets,
but increased to ~80% when we consider 10,000 sites. Finally,
while Olejnik et al. show somewhat lower uniqueness levels
for profiles of pages tracked by Google and Facebook, we
show theoretical reidentifiability rates for some third-party
entities nearly as high as those we achieve with complete
knowledge of all visited domains.
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